GitHub Collaboration Workflow Guide
GitHub Collaboration Workflow Guide
This guide outlines how the IDEEAS Lab uses GitHub for collaboration, code review, and project management. Following these practices ensures smooth collaboration across our diverse team.

Repository Organization
Repository Naming Convention
· Lab-wide repositories: ideeas-lab-[purpose] (e.g., ideeas-lab-templates)
· Project repositories: [project-name] (e.g., ai-tutoring-study)
· Personal repositories: [username]-[purpose] (e.g., jsmith-dissertation)
Repository Structure
repository-name/
├── README.md # Project overview and setup instructions
├── LICENSE # License for the code/data
├── .gitignore # Files to exclude from version control
├── CONTRIBUTING.md # Guidelines for contributors
├── CODE_OF_CONDUCT.md # Code of conduct for contributors
├── requirements.txt # Python dependencies
├── environment.yml # Conda environment specification
├── src/ # Source code
├── data/ # Data files (following data management policy)
├── docs/ # Documentation
├── tests/ # Unit tests
└── .github/ # GitHub-specific files
 ├── ISSUE_TEMPLATE/ # Issue templates
 ├── PULL_REQUEST_TEMPLATE.md
 └── workflows/ # GitHub Actions workflows

Branching Strategy
Branch Types
Main Branch (main): - Always deployable/runnable - Protected branch requiring pull request reviews - Represents the current stable state
Feature Branches (feature/[description]): - For developing new features or analyses - Branch from main, merge back via pull request - Delete after successful merge
Hotfix Branches (hotfix/[description]): - For urgent fixes to main branch - Branch from main, merge back immediately after review
Personal Branches ([username]/[description]): - For experimental work or personal exploration - Can be long-lived, no requirement to merge
Branch Naming Conventions
Good examples
feature/data-cleaning-pipeline
feature/survey-analysis
hotfix/missing-data-bug
jsmith/exploratory-analysis

Poor examples
new-stuff
fix
temp
branch1

Commit Guidelines
Commit Message Format
<type>(<scope>): <subject>

<body>

<footer>
Types: - feat: New feature or analysis - fix: Bug fix - docs: Documentation changes - style: Code formatting (no logic changes) - refactor: Code restructuring (no behavior changes) - test: Adding or updating tests - chore: Maintenance tasks
Examples:
feat(analysis): Add statistical significance testing

Implement t-tests and effect size calculations for comparing
treatment groups in the tutoring effectiveness study.

Closes #23
fix(data): Handle missing values in survey responses

Replace NaN values with appropriate defaults based on
question type and add validation checks.

Fixes #45
Commit Best Practices
· Make atomic commits (one logical change per commit)
· Write clear, descriptive commit messages
· Commit frequently to track progress
· Don’t commit sensitive data or large binary files
· Use present tense (“Add feature” not “Added feature”)

Pull Request Process
Creating Pull Requests
1. Create Feature Branch:
git checkout main
git pull origin main
git checkout -b feature/new-analysis
1. Make Changes and Commit:
Make your changes
git add .
git commit -m "feat(analysis): Add new statistical analysis"
git push origin feature/new-analysis
1. Create Pull Request:
· Go to GitHub repository
· Click “New Pull Request”
· Select your feature branch
· Fill out PR template
Pull Request Template
Description
Brief description of changes made.

Type of Change
- [] Bug fix (non-breaking change that fixes an issue)
- [] New feature (non-breaking change that adds functionality)
- [] Breaking change (fix or feature that would cause existing functionality to not work as expected)
- [] Documentation update

Testing
- [] I have tested these changes locally
- [] I have added tests that prove my fix is effective or that my feature works
- [] New and existing unit tests pass locally with my changes

Checklist
- [] My code follows the lab's style guidelines
- [] I have performed a self-review of my own code
- [] I have commented my code, particularly in hard-to-understand areas
- [] I have made corresponding changes to the documentation
- [] My changes generate no new warnings

Related Issues
Closes #[issue number]
Review Process
For Reviewers: 1. Check code quality and style 2. Verify functionality and logic 3. Test changes locally if needed 4. Provide constructive feedback 5. Approve or request changes
Review Checklist: - [] Code is readable and well-documented - [] Logic is sound and efficient - [] Tests are included and pass - [] Documentation is updated - [] No sensitive data is exposed - [] Follows lab coding standards
Review Comments:
Constructive feedback examples
Consider using a more descriptive variable name here for clarity.

This analysis looks great! Could you add a comment explaining the statistical test choice?

Minor: This could be simplified using pandas' built-in function.

Approval examples
LGTM! Great work on the data visualization.
Excellent analysis - the results are clearly presented.

Issue Management
Issue Types and Labels
Issue Types: - bug: Something isn’t working correctly - enhancement: New feature or improvement - documentation: Documentation needs - question: Questions about the project - help wanted: Extra attention needed - good first issue: Good for newcomers
Priority Labels: - priority: high: Urgent issues - priority: medium: Important but not urgent - priority: low: Nice to have
Status Labels: - status: in progress: Currently being worked on - status: blocked: Waiting for something else - status: needs review: Ready for review
Issue Templates
Bug Report Template:
Bug Description
A clear description of what the bug is.

Steps to Reproduce
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error

Expected Behavior
What you expected to happen.

Actual Behavior
What actually happened.

Environment
- OS: [e.g. macOS, Windows, Linux]
- Python version: [e.g. 3.9.7]
- Package versions: [relevant package versions]

Additional Context
Any other context about the problem.
Feature Request Template:
Feature Description
A clear description of what you want to happen.

Use Case
Describe the use case or problem this feature would solve.

Proposed Solution
Describe the solution you'd like.

Alternatives Considered
Describe any alternative solutions you've considered.

Additional Context
Any other context or screenshots about the feature request.

Code Review Standards
What to Review
Code Quality: - Readability and clarity - Proper documentation and comments - Consistent style and formatting - Efficient algorithms and data structures
Functionality: - Logic correctness - Edge case handling - Error handling and validation - Test coverage
Research Quality: - Statistical methods appropriateness - Data handling correctness - Reproducibility considerations - Ethical considerations
Review Guidelines
For Authors: - Keep PRs small and focused - Provide clear descriptions - Respond to feedback promptly - Test your changes thoroughly - Update documentation as needed
For Reviewers: - Be constructive and respectful - Focus on the code, not the person - Explain your suggestions - Approve when ready, don’t nitpick - Review promptly (within 2-3 days)

Project Management
Using GitHub Projects
· Create project boards for major initiatives
· Use columns: Backlog, In Progress, Review, Done
· Link issues and PRs to project cards
· Update status regularly
Milestone Management
· Create milestones for major deadlines
· Assign issues to appropriate milestones
· Track progress toward milestone completion
· Adjust timelines as needed
Release Management
· Tag important versions: v1.0.0, v1.1.0, etc.
· Write release notes describing changes
· Create releases for major milestones
· Archive old releases appropriately

Collaboration Best Practices
Communication
· Use issue comments for technical discussions
· Tag relevant people with @mentions
· Use draft PRs for work-in-progress
· Link related issues and PRs
Documentation
· Keep README files up to date
· Document API changes
· Include examples in documentation
· Write clear commit messages
Code Organization
· Use consistent file and folder structure
· Follow naming conventions
· Keep functions and files focused
· Remove dead code regularly
Data Management
· Never commit sensitive data
· Use .gitignore for data files
· Document data sources and structure
· Follow lab data management policies

Troubleshooting Common Issues
Merge Conflicts
Update your branch with latest main
git checkout main
git pull origin main
git checkout feature/your-branch
git merge main

Resolve conflicts in files
Edit conflicted files, remove conflict markers
git add .
git commit -m "Resolve merge conflicts"
git push origin feature/your-branch
Accidentally Committed Sensitive Data
Remove file from history (use with caution)
git filter-branch --force --index-filter \
'git rm --cached --ignore-unmatch path/to/sensitive/file' \
--prune-empty --tag-name-filter cat -- --all

Force push (coordinate with team first)
git push origin --force --all
Large File Issues
Use Git LFS for large files
git lfs track "*.csv"
git lfs track "*.pkl"
git add .gitattributes
git add large-file.csv
git commit -m "Add large file with LFS"

Security and Access Management
Repository Access Levels
· Read: Can view and clone repository
· Write: Can push to repository and create PRs
· Admin: Full access including settings and permissions
Branch Protection Rules
· Require PR reviews before merging to main
· Require status checks to pass
· Require branches to be up to date
· Restrict who can push to main branch
Sensitive Information
· Never commit passwords, API keys, or personal data
· Use environment variables for secrets
· Add sensitive files to .gitignore
· Use GitHub Secrets for CI/CD workflows

Remember: Good collaboration practices make everyone more productive and help maintain high-quality research outputs. When in doubt, ask for help or clarification!
